

Antimicrobial resistance. innovation, and promising plants

The golden age of antimicrobial discovery ended in the 1980s, and it has become harder to find new antimicrobials. All the while. our existing stock is stopping working against some bugs. But the quest continues! Scientists are going back to their roots (literally!) and are, once again, looking to plants for new antimicrobials. The study of **ethnobotany** looks at relationships between humans and plants, especially indigenous knowledge of the benefits of some plants.

According to some lab studies, **rosemary** (Salvia rosmarinus) might act against Staphylococcus aureus. If it worked in hospital settings, this could have a big impact, as there are sometimes multidrug-resistant strains of S. aureus (MRSA) that are very difficult to treat.

Changing land use and climate

As we turn to **ethnobotanical research** and to traditional medicine to address AMR, we should think about the possible effects. There could be a big increase in demand for some plants with antimicrobial properties, meaning more cultivation. This **changing land use** can infringe on forests or cause local communities to effectively lose access to newly expensive plants. Deforestation and medical insecurities are more concerning given worsening climate change.

Figs (*Ficus caricas*) have been used in traditional medicine to treat open wounds and digestive conditions in European traditional medicine. Dried fig may work against bacteria from the lower gut that can cause disease, accordina to some lab studies.

Toward a sustainable microbial future

In some ways, we don't yet know where we should be or where we want to end up with AMR. We don't know what plant antimicrobials can offer in terms of innovation, because most of them have not been properly tested in humans. One thing is for sure: we should aim for a sustainable future where humans, animals, the environment and even microbes can be in the right balance.

Lavender (Lavandula

angustifolia), like nearly all plants, both relies on and needs to control microbes it interacts with. A fungus that grows on lavender roots helps them grow further, to reach deeper water. But the flowers contain 300 different secondary metabolites that help them control other microbes. We, too, need to take care of helpful microbes but avoid harmful ones.

Thanks for walking this trail!

If you have a moment, we'd love to hear your thoughts through a short evaluation form about this trail.

The Ethox Centre engages with ethical questions presented by climate change, global health and the development of new technologies.

. Japanese Bitter Orange	3. Chilli	5. Apple
Citrus trifoliata	Capsicum spp.	Malus do
2. Century Plant	4. Aloe Vera	6. Rosema
Agave americana	Aloe vera	Salvia ro

If you have enjoyed this trail, keep up to date with the latest research and other events at **Oxford Botanic** Garden and Arboretum by joining our mailing list on our website.

Plant S **Power!**

Stop the superbugs

7. Fig

8. Lavender Lavandula angustifolia

Introduction

Our world is full of **microbes**. like **bacteria**, **viruses**, and

fungi. Most of these microbes are harmless, but others cause disease in humans, animals, or crops. We use **antimicrobial** drugs like antibiotics to stop these harmful microbes. But the bugs are resisting. Antimicrobial resistance (AMR) is where microbes evolve into **superbugs** that antimicrobials can't stop or kill. Because AMR is a natural process, we can't stop it entirely. But we do need to do more to treat diseases caused by microbes. prevent infection, and have healthy animals and crops.

On this trail, you can learn about how plant antimicrobials have been used historically, how they're promising new potential medicines, and what we should do to stop the superbugs.

Keep an eye out for this symbol for Spotlight on the Ethics avestions.

For discussion about the auestions and to learn more as you go through

> Please do not pick or consume any of the plants on the trail.

This trail does not make any therapeutic claims about the effectiveness of plantderived antimicrobials.

Japanese Bitter Orange

Century plant

Chilli

Do you think we should hope to in a microbe free world?

(•£

Plants as medicine

Plants compete for space, sunlight, water, and nutrients against other plants, but also fungi, parasites, and other living things. To do this, they produce **secondary** metabolites, which give them their smells, tastes, and colours. These are often antimicrobials. protecting the plant from infection.

For example,

Japanese bitter orange

Do you think it's (Citrus trifoliata) bad for plants to contains the kill microbes?

bitter chemical poncirin.

Poncirin may help plants to grow faster. Studies on poncirin show it may reduce inflammation, treat allergies, and change our gut bacteria, which changes how we digest food.

Opportunity for infection

pathogens.

should we rely on knowledge of antimicrobials Some of the from traditional same microbes medicine?

How much

that harm plants can also harm humans. For example, if we have an open wound we might get microbes in the wound, which are usually harmless but can cause illness. We call these **opportunistic**

In traditional medicine practices from around the world, plant roots, leaves, seeds or flowers are used as pastes or teas to try to treat common diseases. The leaves of the century plant (Agave americana) can stop the growth of the bacteria that cause typhoid fever, in lab studies. Lots of plant antimicrobials seem to work in lab settings, but working in humans is a whole different question. Each antimicrobial reauires thorough research.

Antimicrobial resistance and evolution

Antimicrobial resistance (AMR)

is when a microbe isn't affected by medicines designed to kill it or stop it reproducing. Why might microbes have this ability to begin with? The answer is **evolution**. Evolutionary theory says that when a living thing is under harsh conditions, the 'fittest' will survive and reproduce. This goes for microbes, too: only those that happen to be drug-resistant will survive. The fact that AMR exists supports the theory of evolution.

Most **chillies** contain capsaicin. It's what makes them taste spicy, and may also have a pretty spicy effect on microbes! Some skin infection-causing Staphylococcus aureus bacteria can pump antibiotics out of their cells. But according to studies on rats, when antibiotics are combined with capsaicin, they might work again.

Antimicrobials, mummies, and historical texts

Aloe has been used since ancient times, for example in embalming bodies of the dead in Egypt. It was thought that preventing their bodies from decomposing gave the spirit eternal life.

Aloe vera

Should we be held responsible for stopping the spread of disease?

Plant antimicrobial use (whether deliberate or accidental!) is described from ancient times. Hippocrates, the famous Greek physician, mentions medicinal plants as long ago as 500 BCE. The Bible and the Islamic Sunna of the Prophet have shed light on plants that were used for health. Before the late 19th century, people didn't understand that germs can cause disease, so it's unlikely that plant antimicrobials were understood scientifically. But some religious food requirements may have health benefits that relate to stopping the growth of harmful microbes on meats.

New medicines

Apple

low do vou think antimicrobials should be used in medicine, and how might you help?

The **antimicrobial era** started with discovery of the first antimicrobials in the early 1900s.

Penicillin is the most famous. discovered by Sir Alexander Fleming in 1928. It was part of a revolution in medicine against specific disease-causing microbes. There were some good reasons for the switch from plant antimicrobials to man-made. pharmaceutical antimicrobials. Many plants have toxins harmful to humans, even if they have other useful properties. Pharmaceutical antimicrobials only contain the single, desired chemical.

You might have heard the saving. "an apple a day keeps the doctor away." This wisdom doesn't come from nowhere! Antimicrobials in **apples** could use the mechanism of stopping bacterial cell walls from formina.